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Simulating carbon-based nanostructures with SAGESnet, a Scaling and Arbitrary Grid Encoding 
Simulation neural network for large-scale molecular dynamics system simulations 
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Summary:  

This paper proposes a novel method for predicting the nanostructure of carbon-based materials over large 
dimensional and temporal regimes via the use of a multi-scale neural network architecture, allowing for the 
generation of progressively larger scale simulations at each level up.  

Using such a method will permit the computation of large-scale simulations at previously unseen efficiency, 
while making relatively small sacrifices in terms of the functional predictability and reliability of these 
simulations. This method is based on the idea of computational reducibility (3, 4) – a concept that is 
employed broadly in science – that assumes that many complex systems can be reduced to simpler 
representations which still bestow predictability upon these systems. In order to establish effective goals 
for the accomplishment of this proposal, we present two overarching objectives: 

1. The first objective is to build a neural network architecture that is engineered to receive atomic data 
in the form of atoms labeled with their element number, location in 3D space, and their trajectory 
vector, and to make predictions about how the locations and trajectories of these atoms will change 
over time in relation to one another – that is, this network takes in atomic data and trajectories, and 
returns simulated atomic data and trajectories for a later timestep. What is unique about this 
architecture is that it is set up in such a way as to allow for simulations over very large space and 
time scales in a computationally efficient manner. The procedures used to accomplish this 
efficiency will be discussed. 

Figure 1: This figure represents the steps taken by the neural network architecture in order to perform molecular dynamics simulations. Each of these steps is 
described in greater detail in the Specific Architecture section of Objective 1. 



2 
 

 
2. The second objective is to train and test the neural network architecture on physically accurate 

molecular dynamics simulations made with the high quality AIREBO potential (1), used for 
modelling reactive hydrocarbons in molecular dynamics simulations. Following this validation 
with molecular dynamics data, we will proceed to a comparison of our simulation results with real-
world data, testing structural dynamics generated by our model for carbon based materials, such as 
graphene, carbon nanotubes, and hydrocarbons against research on the material properties of these 
structures documented in the literature. Following this validation against real-world data, we will 
discuss some ways in which neural networks can help us to better understand the laws of nature, 
and of how this trained model could be employed to help us accomplish this, and we will also 
discuss how this neural network could help us to reverse engineer materials with specific target 
properties that we specify. 
 

Background and Introduction: 

As mentioned, this proposal is based upon the concept of computational reducibility (3, 4). One assumption 
made with the notion of computational reducibility is that many complex systems can be reduced in such a 
way as to still provide valuable prediction of their states without needing to take every individual component 
into consideration. One such example of this type of reduction is Newton’s laws of motion, which allow 
for the accurate prediction of the motion of objects without needing to predict the motion of all of the 
individual atoms within those objects. 

Such examples fill the scientific literature. The principle of being able to reduce components of a system to 
a predictable formula forms one of the most basic cornerstones of physics and all the sciences. However, 
there are many regimes in which many of these reductional formulas have not yet been discovered. One of 
the regimes whose phenomena have not yet been reduced to accurate analytical formulas is that of the 
nanoscale. This realm of complexity and emergence exists between that of quantum mechanics with its 
formulas that, while not simple to solve, tend to give very accurate results, and that of Newtonian dynamics 
– the formulas of which have been used in computing everything from the mechanics of cars to the 
trajectories of spaceships.  

One may consider how the equations of motion, as incredibly simple as they are, are capable of describing 
systems composed of trillions upon trillions of atoms. One day we may have equations that accurately and 
efficiently describe matter at the nanoscale, but this is not currently the case. This is unfortunate, as the 
nanoscale holds the keys to some of the most important questions in science – including those related to the 
functioning of biological cells and their molecular building blocks (2) as well as possible treatments for 
diseases that affect the human body at this scale. Discovering general formulas capable of efficiently 
predicting nanoscale phenomena could signal the beginning of a significant leap forwards in our 
understanding of biology and other sciences, as well as the beginning of a significant leap forwards in our 
ability to manipulate matter. Currently, however, we are often limited to using computationally intensive 
numerical simulations to make accurate predictions in this realm. 

There are various traditional methods used by scientists in an attempt to predict the behavior of matter at 
this scale, which methods are generally classified by the time and space scale at which they perform their 
simulations. These methods include ab-initio, density-functional theory (DFT), molecular dynamics, 
coarse-grained molecular dynamics and continuum simulations (5).  Each of these methods offers different 
strengths and weaknesses. Ab-initio simulations, based on the Schrodinger equation, while being extremely 
accurate are also extremely computationally intensive, scaling at the roughly the value of N4, where N is 
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the number of bodies (such as electrons) in the system and, thus, their simulation scale is very limited. DFT 
is slightly less accurate than ab-initio simulations but can simulate larger systems. It is still, however, 
limited in the number of atoms it can simulate.  

Molecular dynamics allows for relatively large-scale simulations of tens of thousands to even billions of 
atoms when supercomputers are employed (6). Molecular dynamics (MD), as opposed to ab-initio 
simulations, performs simulations that are largely based off of Newtons equations for motion, while 
employing interatomic potentials (that can often be based off of ab-initio simulations) that attempt to 
describe the interactions between atoms and/or molecules based on their field potentials. MD uses various 
algorithms for the numerical integration of Newton’s equations of motion that attempt to more accurately 
describe the interactions between the particles in a given simulation while also minimizing the error and 
computational workload (16). For this proposal, we will be using data generated by molecular dynamics 
due to its ability to compute large scale simulations at a relatively low computational cost compare to ab-
initio methods. The MD scale for training data is more computationally approachable in terms of the 
objective of this project for performing larger nanoscale simulations we are proposing to accomplish with 
our neural network model. Based on the success of this approach, our model should easily adapt to ab-initio 
training data, due to its flexible scaling features. We will go into further discussion on the usage of 
molecular dynamics in our proposal.  

Other methods used to simulate materials at an even larger scale can be used, but tradeoffs are often made 
as scientists attempt to simulate larger and larger scale systems with limited computational power.  

One approach that seeks to address some of the computational limits of other forms of simulation is 
multiscale modelling. Multiscale modelling seeks to simulate materials over multiple time and space scales, 
attempting to retain the accuracy of smaller scale models while maximizing the system size capable of 
being simulated. Multiple variations of this technique have been reported in the literature (7, 9). Some of 
the more recent attempts have involved the use of machine learning to help increase computational 
efficiency, while maintaining accuracy. This proposal seeks to build on some of this work in machine 
learning for multiscale system modelling. 

Other studies have been performed that seek to reduce the computational overhead of simulating atomic 
trajectories and interactions via the help of neural networks. Neural networks are a computational 
framework based loosely on the principles by which biological neurons operate. A biological neuron is 
capable of integrating complex signals from multiple sources into meaningful representations. One 
proposed method for how biological neurons operate is called Hebbian learning (13). Hebbian learning has 
often been explained as the principle that “neurons that 
fire together, wire together.” What this implies is that 
connected neurons that fire in quick succession to one 
another will have their connection strengthened, while 
those that fire out of sync with one another will have 
their connection weakened. Much work has been done 
to try and better understand this process, whose 
explanation has been vastly simplified in this work (14). 

Artificial neural networks attempt to apply the 
principles of Hebbian learning in a more systematic and 
mathematical function. They consist of “neurons” that 
receive weighted inputs from multiple other neurons. 
The neuron sums the weighted input from other neurons 

Figure 2: This image represents a sigmoid function - one 
that is often used to introduce nonlinearities into neural 
networks. 
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and performs a nonlinear operation on this sum, where the nonlinear operation can be something as simple 
as passing this sum through a sigmoid function. A neural network consists of multiple “layers” of neurons 
each connected sequentially with latter layers. Information (often encoded in the form of a vector) that is 
assumed to be useful in making a desired prediction is fed into the neurons of the first layer of the neural 
network and is “fed forward” (15), layer by layer (where each neuron in these layers performs the operation 
of summation and nonlinearization previously described), until the now transformed information reaches 
the output layer of the network. The output layer of the neural network is special in that the information 
sent out by its neurons is treated as a prediction and compared to a prediction output provided by the user, 
which shows the network what prediction it should have made. A training process ensues that iteratively 
helps the whole neural network to learn to relate its input information to a desired output, by adjusting the 
connection weights between individual neurons of different layers. This can just be thought of as a tool for 
function approximation for functions whose analytical representation is either unknown or too difficult to 
compute efficiently without further representational reduction. Neural networks have been used for various 
classification and regression tasks – from image captioning and classification to housing price predictions. 

As mentioned, neural networks are receiving increased attention in the chemistry and materials science 
communities, due to their ability to efficiently represent complex processes and relationships Some of these 
attempts include using a neural networks to act as efficient translators for information transfer between 
finite molecular data and continuum simulations (8), as well as many works that have attempted to use 
neural networks for the purpose of learning interatomic potentials based off of ab-initio data (9), that can 
then be used in molecular dynamics simulations. Two models worth particular mention are deep tensor 
neural networks (10), and VAMPnets (11).  

Deep tensor neural networks are network architectures that use multiscale features of molecular data in 
order to perform chemical calculations on these molecules, including calculating information about their 
trajectories as well as the energies present in the system. This type of network has led to state-of-the-art 
predictions of molecular properties at a near ab-initio level of accuracy. The architecture of this neural 
network is related to convolutional neural networks that we will further discuss. 

VAMPnets are neural networks that take atomic data in the form of molecular configurations and classify 
this data into informational kinetic models representing the given data. What is unique about this approach 
is that this neural network architecture attempts to take a traditional pipeline for developing Markov states 
to describe chemical data, that usually require a lot of expertise on the part of the individual designing the 
model in order to avoid large prediction errors, and automate this arduous pipeline with one neural network 
architecture that attempts to encode the same information based on machine learning statistics – thus, 
removing some of the potential for human error. The Markov states generated by this network architecture 
are comparable and, sometimes, superior to those generated by the hand-crafted pipelines’ results. 

These studies listed have provided incredible breakthroughs in data science for chemical predictions. This 
current work proposes to take some of the concepts employed in these studies and combine them into a 
more streamlined end-to-end prediction network for small to very large scale molecular dynamics 
simulations. Having such a streamlined model that connects a lot of the previously successful advances in 
machine learning for chemical predictions is something that is currently being heavily researched (12). 

Among the advances incorporated into our model, there are two that stand out. The first is that this structure 
allows for simulation over arbitrary grid sizes determined by the user – meaning that this method can 
simulate either small or large scale molecular dynamics atomic trajectories, as opposed to many other types 
of neural networks that only take fixed input sizes. The second, strongly related to the first, is that this 
network is capable of simulating over very large space and time regimes, due to its multiscale nature and 
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the use of neural network autoencoders that help to provide compressed and informationally dense 
representations of atomic data over multiple timesteps, allowing for meaningful information transfer 
between multiple simulation scales. Autoencoders will also be further discussed in the Proposed Work 
section. This network’s predictive abilities are also due to the use of convolutional neural network 
operations that help to minimize the amount of training data needed to generate accurate predictions by 
reducing the number of parameters of the neural network (NN) architecture. Having such a model that 
combines all of these previously used features, as well as some new ones, will allow for the simulation of 
larger scale systems than were previously computationally accessible, as well as allow those with smaller 
computational resources to be capable of performing large scale simulations, from which they were 
previously excluded. To the author’s knowledge, no other NN models have attempted to combine all of 
these computational architectures into a single neural network for the purpose of simulating molecular 
dynamics. 

Proposed Work 

Objective 1: 

General Overview: The purpose of the first objective is to define a neural network structure that is 
specifically suited to interacting with and predicting 3-dimensional chemical data and its trajectories across 
multiple time and space scales. This model seeks to accomplish functional accuracy – meaning that some 
of the more specific chemical information will be lost as information is passed up to larger space and time 
scales, but the emergent properties and structures based on the underpinning chemical makeup of the system 
will be maintained. Effectively, this model should be able to predict how a material functions at large scales 
based off of the interplay between its lower level components. It will not, however, have the goal of being 
able to perfectly recreate exact atomic trajectories at smaller scales from larger scale data. An analogy for 
this principle would be comparing the differences between solutions in two different beakers containing the 
same chemical solutes. Looking at the solutions and measuring their macroscopic properties, these two 
systems will appear very similar. However, if we were to examine these solutions much more closely, we 
would be able to see that the individual positions of their atoms are very different from one another. Thus, 
when we state that we want our model to be functionally accurate, we mean that we want our model to be 
capable of predicting the emergent properties of materials at different scales, without necessarily being 
capable of perfectly recreating conditions at smaller scales. This represents a more probabilistic approach 
to modelling the chemical and material properties of a system at various scales. 

This method employs a neural network that takes in atomic coordinates and trajectories and uses this 
information to create large scale chemical and structural simulations with the help of an autoencoder neural 
network structure that compresses data to smaller and denser representations than the original input (17, 
18). The neural architecture proposed in this paper is composed of multiple smaller scale neural networks 
working in conjunction with one another, each making predictions at larger time and dimensional scales. 

In order to accomplish this, we will build a model that is capable of: 

1. Receiving chemical data in the form of atoms labeled with their element and initial trajectory 
values, as well as their positions in 3D space. 

2. Converting this chemical information into a form that is readable by the neural network. 
3. Transferring data, in an automated fashion, between multiple time and space scales.  
4. Performing functionally accurate material simulations on this data, including simulating the mass 

trajectories and material properties, at these various scales. 
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With these properties in mind, we propose SAGESnet, a Scaling and Arbitrary Grid Encoding Simulation 
neural network for large scale molecular dynamics system simulations, whose specific architecture will be 
described, below. Before proceeding to the specific architecture of this network, we first have to have a 
basic understanding of a couple of concepts used in neural networks. The first of these concepts that will 
be given an important overview is the autoencoder neural network. 

An autoencoder neural network is a neural network that, through its training process, learns dense fixed 
length representations of higher dimensional data. So, for example, some autoencoder neural networks are 
trained on images of faces, where the input image could be 500*500 pixels, giving an input vector to the 
autoencoder network of a length of 250,000 numbers. This is obviously a lot of data that the neural network 
needs to process – and this is only considering grayscale images. This neural network, however, may learn 
a way to compress this image data into a shorter length vector representation (maybe to a vector of a length 
of 1000 scalars, for example). The way this network accomplishes this is a function of its structure and 
training. The architecture of this network has a bottleneck in the center of the network. So, for example, the 
layers of the network may have the dimensions, layer by layer, of 10,000, 5,000 and 1,000 neurons, followed 
by layers of 5,000, and 10,000 neurons, respectively. Then, the training process for this network is simple. 
The input given to the network is a picture of one of the faces, and the intended output from the network is 
also a face – the exact same face as was given for the input. In this manner, this network is given a large 
dimensional vector representing an individual’s face, and must find a way to compress that information 
efficiently enough to be able to pass this information through the middle layer as a vector of the length of 
only 1,000 scalars, and then use this length 1,000 vector to recreate the original image as faithfully as 
possible, in order to minimize the penalty it receives when it does not give a prediction that is close in 
features to the original image. For this specific example of training an autoencoder network to learn facial 
representations, the autoencoder will be forced to be as efficient as possible and will, over time, learn 
similarities between different faces that tend to repeat, and will store information about these repetitive 
features within its weights. Once these representations are learned, we can then chop the neural network in 
half, so as to obtain the length 1,000 vectoral representation of faces instead of images of a whole face, and 
we could then perform further compression on this representation (with PCA, for example, or other common 
dimension reduction methods), to use this representation for clustering images of people with similar faces 
together. This is useful for chemical data because, thankfully, there are chemical arrangements that tend to 
repeat on a normal basis. For example, oxygen tends to bind well to hydrogens to form a molecule that is 
relatively stable and constant. We can utilize autoencoders to represent often recurring spatial and temporal 
chemical patterns, allowing us to have lower dimensional representations of the emergent chemical and 
structural properties of grouped elements in a system. 

As humans, we also perform similar processes in language. We learn the definitions for new words that 
contain more information per character about the same concept than the original definition, in an effort to 
communicate more efficiently, and would tend to spare ourselves of learning words that are rarely used, 
instead focusing on those that are most useful in our day to day communications with others. 

This discussion on autoencoders brings up one of the major scientific advantages of this proposal – as 
autoencoders can be used to cluster images of similar human faces together, the autoencoders in this 
network architecture may also be used to classify often recurring chemical patterns. This could help us to 
get a better understanding of the reaction kinetics of our chemical system, as well as material properties – 
such as what elements tend to clump together. And, because the architecture described in this proposal is 
for the purpose of multiscale modelling over various space and time regimes, this means that we could 
utilize the autoencoders at each simulation scale in our network to classify chemical phenomena at greater 
time and space scales, allowing for researchers to have a better method for classifying the chemical systems 
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with which they are working. This principle of using neural networks for understanding physical principles 
will be further discussed in the second aim. We will see that neural networks are not only useful as “tools” 
for making predictions – they can also help us to gain new understanding of physical processes with which 
we are not yet as familiar, and help us to find patterns in scientific data and make discoveries that would 
have otherwise taken a much longer time to discover.  

For the specific architecture of our neural network, autoencoders are used to transfer chemical information 
from one layer – one simulation scale – to the next. This allows our multiscale NN to devote the most 
computational resources to the patterns that occur most often. 

One other subject that must be discussed, briefly, before proceeding to a specific overview of the neural 
architecture we use for our model, is related to convolutional neural network layers. 

Convolutional NNs, inspired by processes in the human visual cortex, are, in general terms, small scale 
neural networks that range over data presented to them, piece by piece, and perform computations on that 
data, often performing filtering on the data in such a way as to augment certain characteristic or repeating 
features in the data (19).  

One important aspect about convolutional neural networks (CNN) is that, unlike more traditional neural 
networks, they have spatial awareness encoded into them. This means that a CNN can detect when certain 
features are in close proximity to one another, which is incredibly useful for image detection or, more 
importantly for the field of nanoscience, recognizing relations in 3-dimensional chemical data. For these 
purposes, CNN based machine learning has been researched intensively for its utility in making chemical 
predictions, as well as for predicting or discovering nanoscale properties and structures (20, 21). 

In the context of images, convolutional kernels scan small filtering windows over an image, multiplying 
these portions by an image filter that has a certain pattern that matches most strongly only with certain 
features. For a simplified example, the filter might be in the shape of an eye and, if this convolutional kernel 
with an eye shaped filter scans over a segment of an image where an eye is present, that filter will return a 
higher output value than otherwise – it will send out a stronger signal in response to a feature that matches 
its filter. SAGESnet uses a 3-dimensional variant of a convolutional kernel to raster over chemical data 
present in our simulation grid to aid in the prediction of how atomic trajectories and material properties 
change over time as a function of their location in the grid. 

We now have an adequate understanding of some of the most crucial neural network architectures employed 
in our model. We will now discuss the specific architecture of our model that makes these chemical 
predictions over a large space and time scale possible. 

Specific Architecture: In SAGESnet, the first step of our prediction process is the conversion of a single 
molecular dynamics timestep of atomic data into a form that is more easily handled by neural networks. 
This occurs when atoms with their informational labels (including trajectory, locational, and elemental 
information) are placed in a quantized 3-dimensional grid as a preparatory step prior to being converted by 
a low level autoencoder network into a format readable by the CNN based prediction network. This 
conversion step takes the atomic data at each point within the 3D (human readable) grid and converts it into 
a machine-readable form (that is not necessarily readable by humans, but is informationally useful to the 
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neural networks), placing it into a new 3-
dimensional grid that we will call the simulation 
grid. At this step, all of the atomic data vectors are 
converted to vectors that are not necessarily the same 
length as the original human readable atomic labels, 
but whose length will be a hyperparameter – a user 
defined variable that is tuned by the individual 
performing the NN network training (an example of 
a hyperparameter would be the number of neurons in 
a neural network layer, or the scale at which we 
inform the program to perform the simulation – 
neither of these examples are learned during training 
but, rather, are specified by the individual training 
the neural network). 

This transformation of data between the human 
readable and machine readable grid is much like how 
a translator helps people who speak different 
languages to communicate – and is a result of the 
network training. The exact transformation 
previously performed on this data and the form of its 
current representation is determined by the neural 
network training process performed on molecular dynamics data. As we learned about autoencoders, this 
data is highly representational of information pertinent to the simulation. What matters is that this data 
representation can be converted back into coordinate and trajectory data again, and that it is trained to 
represent atomic coordinates, element types, and trajectories in such a way that maximizes the ability of the 
CNN layer to perform accurate predictions. 

After the atomic information is converted by the autoencoding network and is distilled in the simulation 
grid one step must be performed before predictions are made via the CNN network. This step allows for 
greater control of the system environment in the simulation. The way this is accomplished is via a blanket 
input vector that is mapped over all cell vectors via a simple convolutional kernel. The purpose of this 
operation is to map information about environmental factors, such as the temperature and pressure of the 
system or information about electromagnetic fields present in the system, into each cell location. This 
parameter will also allow the user to specify the presence of force vectors in locations of the 3D cellular 
grid. Such parameters – especially for temperature and pressure – are available, as a general rule, in 
molecular dynamics software to allow for simulations in different environmental conditions, and these 
considerations must also be taken into account by this simulation model. 

The CNN prediction network can then proceed with predicting timestep t+1, from the data present in the 
current timestep t (the current information stored in the simulation grid). The actual shape of the CNN is a 
hyperparameter specified by the user, but the general principle of its operation is that it takes input from a 
center cell, performs a transformation on the information from that cell, and maps this transformation onto 
surrounding cells, taking into account the positions of each cell relative to the center cell. This procedure 
emulates a force field type of procedure, where the center cell causes the field, and the effects of this field 
are summed into the surrounding cells. The transformation performed by the CNN is determined the 
training of the neural network, and this transformation is a function of both the values within the center cell, 
as well as the relative position of the output cell with regards to the center cell. 

Figure 3: This represents the setup of a 3-dimensional grid in 
this architecture, where the yellow cubes are the cells, and the 
blue cubes are the virtual cells, used to transfer information to 
other grids. 
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The goal of this CNN is to predict the next molecular dynamics timestep. The CNN rasterizes over all cells 
in the network, performing the transformation described previously. After the CNN is finished scanning 
over the 3D grid, all the cells in the grid will have received multiple summation inputs resulting from the 
CNN interacting with all of their neighboring cells and sending the results of those interactions into the 
considered cell. One could imagine this process as the noise levels in an apartment – the noise level in one 
apartment is a function of the noise level of all the surrounding apartments, transformed by the sound 
vibrations’ interactions with the walls before entering into the apartment in question. It is important to keep 
in mind that values sent out from the CNN with each interaction may also be negative. Another important 
aspect of the output from the CNN with each grid interaction is that its input is the machine-readable vector 
representation of a cell, and its output is a vector of the same length. Therefore, the state of each cell (any 
of the numbers within the cell’s vector representation) can be completely altered by the output from the 
CNN transformation sent into that cell. This is how the states of cells in the grid are altered. 

The way the accuracy of this prediction is assessed is important. First, the autoencoder network must decode 
the prediction made by the CNN back to a human readable form. Then these predictions for the next MD 
timestep are compared with the actual next MD timestep provided by the training data. This includes 
comparison between the actual and predicted atomic coordinates, trajectories, and element types. This 
comparison constitutes the loss of the NN prediction. The lower the loss, the better the prediction of the 
network – that is, the closer it was to the actual simulated molecular dynamics data. The loss will be 
computed by the MSE (mean squared error) loss function. This loss function is useful for regression type 
prediction problems, such as predicting MD trajectory data. It is commonly used in the literature. The 
equation for the MSE loss is: 

 

Where n is the number of samples,  is the actual target value and  is the predicted value. The utility 
of the MSE loss function is that it penalizes predicted values that are further from their target values much 
more so than more accurate predictions, helping to accelerate the training process and prevent the network 
from being over adjusted even when its predictions are relatively close to the target value.  

Another very important part of this prediction process is that cells along the outer layer of the grid send 
output outside the scope of the grid. This is the mechanism that allows the user to specify arbitrary grid 
sizes, because larger scale grids have a means for communicating with one another. The simulation process 
just described can be repeated as many times as specified to simulate multiple timesteps.  

The last network that can act on this simulation grid is a temporal and spatial scale transforming autoencoder 
and is the key to the ability of this model to perform large-scale simulations. This autoencoder is trained to 
be able to convert multiple cells in a grid structure over multiple timesteps into a single cell representation 
that can be used in a larger space and time scale grid. The training process for this conversion is similar to 
the one performed when training an autoencoder on image data – the user assigns a hyperparameter for the 
number of timesteps and cells they want to be represented in a larger scale cell, and trains the autoencoder 
to pass this information as optimally as possible through a bottleneck layer of the same dimensions as the 
larger scale representational cell, while attempting to reconstruct the input data in the output prediction. 
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The encoder is then chopped in half, and the output of the middle layer is used to represent the larger scale 
cell. This larger scale representational cell is represented by a vector of the same length as the lengths of 
the vectors representing smaller cells. Thus, the computational intensity of simulating larger time and space 
scales is equal to that of simulating smaller layers. Therefore, the training of this autoencoder network, that 
also rasterizes over the entire smaller scale grid (this time, however, skipping steps so every cell from the 
smaller scale grid is only contained in a single larger scale cell) is incredibly important to the multiscale 
simulation ability of this proposed network. Extra measures will be taken to ensure the best training of this 
aspect of the network, including extra training on data that is not as well represented by this autoencoding 
operation. This autoencoder will also, afterwards, be trained in conjunction with the larger scale prediction 
layer (where the MSE has already been used in the autoencoder training and is used in this training process 
as well) in order to tune it not only for representing data at lower levels, but also for providing data that is 
useful for prediction purposes to the larger scale grid. 

As mentioned, this autoencoding step is the feature of our model that allows for large scale simulations 
over space and time. This is possible because this network has learned, through its training process, to only 
pass the most vital data from smaller scale simulations up to the larger simulation grids. Using these network 
architectures in conjunction – one for prediction and the other for data compression and decompression – 
allows for simulations over very large scales. This process can be repeated over multiple scales to simulate 
very large temporal and spatial regimes. 

Feasibility: Many other researchers have addressed parts of what this work proposes. For example, 
researchers at Argonne National Laboratory have used machine learning to develop intermolecular 
potentials for simulating water (9), and other researchers have used neural networks as interfaces for passing 
information between small (molecular dynamics) and larger scale (continuum) simulations between their 
respective boundaries (8), while other researchers have even used autoencoders to aid in atomic level 
simulations over large time scales (26). All of these efforts have aided in the computational efficiency of 
the simulation models, allowing for much larger scale models with very little trade-off in terms of accuracy. 
This model expands upon some of these accomplishments by allowing for automated simulation scaling 
over multiple levels. 

Potential Challenges and Alternative Approaches: The first challenge is related to data acquisition. Neural 
networks need a lot of data in order to provide accurate predictions, and the amount of data necessary scales 
exponentially with the number of parameters in the neural network, if one wants to prevent a neural network 
from overfitting – meaning it only learns the data it is presented but doesn’t generalize will to unseen data. 
For these reasons, we have decided to use molecular dynamics data for our training process. Molecular 
dynamics data is computationally intensive to generate, but not so much as ab-initio atomic simulations, 
which is much more accurate. Our hopes are that, if our model can perform well on molecular dynamics 
data, this model could also be trained on ab-initio data in future works, as the structure of the network is 
relatively malleable to different scales of chemical data. Another effort that we will make to reduce the cost 
of training SAGESnet is to first test the ability of this network to predict cellular automata that, like atoms, 
can exhibit emergent behaviors at larger space and time scales, in an effort to focus first on optimizing the 
structure of the network (such as the hyperparameters). Cellular automata data is cheap to generate and, 
therefore, could prove very valuable in helping to validate the concept of taking advantage of computational 
reducibility with the help of neural networks, as well as provide an insight into our network architecture’s 
ability to perform these reductions 

With this reduction to molecular dynamics data, as opposed to using ab-initio data, another concern with 
this model is how valid its predictions will be in real world scenarios. In an effort to mitigate some of the 
disadvantage of using MD data, we have chosen to use the high quality AIREBO potential, which isn’t the 
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most efficient molecular dynamics potential, but provides accurate representations of hydrocarbon 
simulations, as it is fitted to ab-initio generated data for hydrocarbons. This potential also takes bond 
formation and breaking into account, so our model will still be able to model some aspects of chemical 
reactivity, and mechanical responses to large forces. 

As mentioned, because we have chosen to work with MD data, we have chosen to use the AIREBO 
potential. This should suit our needs, as we have also chosen to limit the types of conditions that our model 
can simulate, restricting our current simulations to hydrocarbons and carbon-based structures, to be more 
specific to the experiments we are performing.  

Another technique to help decrease the amount of data we will need is to train the lowest level of our 
network until it achieves a very high prediction accuracy in our simulations, and then use this lower level 
network to generate more training data in a more computationally efficient manner, which can then be used 
for training the larger scale neural networks. 

Another challenge this work presents is related to some of the technical aspects of neural network 
architecture and training. Neural networks use a type of programming methodology called “fuzzy logic”, 
meaning they are more general than the traditional form of programming. Because of this they are better at 
working with more abstract data – such as photographs, for example – but this also means that they are not 
as proficient at information storage, and this means that it could be possible for this neural network model 
to “lose” atoms, or the mass could change slightly over the course of the simulations. This is obviously a 
problem. A solution we propose to this possibility is to record the amount of mass at the beginning of the 
simulation (or the number of each atom type) and scale the model output at each round of training to 
maintain this number constant. This can also help us to ensure that the distribution of atoms of each type 
does not change over the course of the simulation. Something related to this challenge is the limited scope 
of influence that every cell in the grid has over its neighbors. Due to computational limits, we cannot have 
every cell in a grid fully aware of (connected to) every other cell in the grid, and must limit the distance of 
influence that each cell has over another grid cell. One method that could help to overcome this challenge 
is by implementing a feedback loop between scales in the network where, instead of simulating just one 
scale at a time, we could simulate multiple scales and have larger scales feed information from their 
simulations down to lower levels, thus increasing the scope of “awareness” each cell has to its neighbors. 

Another step we are taking, not explained fully in this proposal for the sake of space, is to use yet another 
neural network that has the sole task of viewing the inputs to every single cell and predicting the type of 
loss their prediction will incur. By this method, we can get a real time prediction, for every cell, of the likely 
confidence bands for the prediction given by the cell in question. This could be used, in future works, to 
create a network model that scales certain collections of cells to a scale at which they are capable of making 
the highest accuracy prediction. This assumes that some space and time scales may provide better or worse 
predictability for certain phenomena (such as the idea that the flow of water at a larger scale is less 
challenging than predicting the movement of individual water molecules within that flow of water). A 
similar network will also be trained to help ensure the accuracy of compressions performed by the 
autoencoder network. We could also use the concept of a “sensitivity grid” that probes a simulation grid, 
making slight alterations to different values within cells and recording the overall effect on the system from 
these small changes. This is basically akin to computing the derivative of system volatility as a function of 
small changes to cell values. Using this grid, we could set up mechanisms to force the architecture to pay 
extra attention to these larger impact cells and their values. 

There are likely other challenges that this work may present, and these challenges can be addressed as more 
time and writing space present themselves. 
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Objective 2: 

General Overview: Designing and describing a neural network model that is capable of simulating atomic 
data is an incredibly challenging task. Attempting to concisely describe all of the ins and outs of that 
network design may be just as challenging. For the sake of documenting what is original about the 
SAGESnet architecture, as well as to provide enough working knowledge to a multidisciplinary audience 
in an effort to make this proposal (hopefully) accessible, a large portion of this proposal has been devoted 
to a description of the first objective. To support this decision, the author argues that neural networks, 
themselves, can act as sources for scientific knowledge and understanding, once one is able to decipher 
their properties. For a long time, neural networks have been thought of as black boxes – but there has been 
a recent trend among physicists and other scientists to break open neural networks in an effort to understand 
how these machines are capable of solving some incredibly complex problems in chemistry and the physical 
sciences (22). The thought is that by better understanding the inner workings of these systems, we may be 
able to glean insight out of them that helps us to understand more about the inner workings of the laws of 
nature. First, however, before we discuss the types of insights that we may gain from opening up the wiring 
of SAGESnet, we must train it, and validate its performance against other similar attempts. 

As previously mentioned, this model will be trained on simulation data derived from molecular dynamics 
simulations. While the computational power of desktop computers is greatly increasing with the continual 
advances in graphics processing units technology (a fact that has spurred much of the growth in machine 
learning), many types of simulations are still too computationally expensive to perform without the use of 
larger scale computational resources. This computational demand for such simulations is one of the main 
reasons we have chosen to currently use less computationally intensive methods that still provide 
predictively accurate results. For the purposes of this proposal, we will focus on simulating graphene 
systems, which have been heavily studied and documented in the literature, thus providing a solid test bed 
for validating the accuracy of our model. We will give a brief overview of the merit of graphene, as well as 
explain a method to verify the practicality of our model for simulating graphene. 

Brief Overview of Graphene: Graphene is a material which has great potential in terms of its versatility for 
various applications, from wearables to electronics, to even helping to produce the basic necessities of life 
– but it’s costly to mass produce (23). Obtaining a greater understanding of how graphene behaves, as well 
as the chemical reactions that result in its formation, could lead to significant advances in areas such as 
water desalination, energy production and storage, and materials science. It is for these reasons that our last 
aim is to use the SAGESnet model to better understand the mechanisms behind graphene properties in an 
effort to aid in the design of cost-effective and scalable chemical syntheses and modifications of graphene-
based structures, allowing for better production costs and versatility of structures. 

Graphene Molecular Dynamics and Neural Network Simulations: The study we cite for as a comparison 
for our work is one that has been previously mentioned in this proposal (21), performed by Hanakata et al., 
titled “Accelerated search and design of stretchable graphene kirigami using machine learning”. In this 
paper, the researchers blended machine learning and molecular dynamics simulations together into a single 
pipeline that they used to search for certain graphene cutout patterns that yield highly stretchable graphene 
sheets. The applications for graphene cutouts are numerous, where some of the most interesting of these 
include applications in robotics and wearable devices. 

The method followed by the researchers in this study was a type of search utilizing molecular dynamics 
and machine learning to find high strain yield graphene sheet cutout configurations. The researchers had 
roughly 30,000 possible configurations, and it was computationally infeasible for them to perform 
molecular dynamics simulations to test the strain of each of them, so they developed a pipeline where 100 
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configurations from this set were randomly chosen and simulated in MD. Then, the resultant strain 
information of the sheets was obtained from the MD simulation. An image representation of the cutout 
configuration was generated, and this was fed into a convolutional neural network model that learned to 
predict the strain of graphene cutouts given their appearances. Next, the trained neural network was used 
to perform accelerated predictions on all 30,000 configurations at a much higher computational efficiency, 
and the top 100 predicted configurations for high strain were then simulated in MD. These results were then 
used to further train the neural network’s predictive abilities, and the cycle was repeated until convergence 
occurred – that is, the training was continued until the NN predictions began giving consistent material 
predictions round after round, and the top 100 candidate graphene cutouts were obtained. 

As we know of no previous works that have performed multiscale simulations completely via neural 
networks, it is difficult to compare our model with others in a strictly numerical fashion. We can, however, 
attempt to validate our model by following a similar procedure to that cited. The researchers in this study 
used the AIREBO molecular dynamics potential previously mentioned, as well as the open source MD 
software LAMMPS, maintained by Sandia National Laboratory (24), and also described the parameters 
they used within their MD simulations. We will perform classical MD simulations, using the parameters 
defined in this study, on graphene cutouts with stretch forces applied to their edges as was performed in the 
study and feed the results of these simulations to our model so it can learn to simulate similar conditions. 
Performing training on these simulations will allow us to gain an understanding of what hyperparameter 
settings are best to use in our network for this type of simulation with graphene. 

After our model has been trained with the best hyperparameters we could find, as well as after the average 
training loss has bottomed out (indicating that further training would be unlikely to yield better results), 
instead of continuing to perform classical molecular dynamics simulations, we will switch to using solely 
SAGESnet to simulate the molecular dynamics of randomly chosen graphene configurations that have not 
yet been seen by the NN model. Instead of predicting a scalar strain yield, however, we will be able to 
obtain the strain/stretch properties of the graphene sheet configurations directly from the atomic scale 
simulations performed by our network.  

Due to the computational efficiency of neural networks over more traditional MD approaches, we should 
be able to perform a larger number of simulations via the NN architecture than the researchers in this paper 
were able to perform with traditional MD. Due to the efficiency of our neural network model, a good test 
of the performance of our network will be to determine if, with these computational reductions afforded by 
the network, it is now computationally feasible to study all 30,000 random configurations of graphene 
cutouts, in an effort to discover the cutout that affords the highest strain yield. Once this cutout has been 
discovered, the same simulation will be performed in classical MD to verify the validity of the simulation, 
and the classical MD derived strain yield will be compared with the best strain yield discovered by the 
method of the cited work. It would be considered an indicator of the success of our model to be able to find 
a graphene cutout configuration with a higher yield strain, or one equal to that discovered in the paper, by 
simulating all of the configurations in a computationally feasible amount of time. In the study, one 
simulation of graphene took about 1 hour to compute with 4 CPU cores available – so computing all 30,000 
MD simulations on such a device would take about 3.5 years! The results of this proposal could be 
considered a great success if SAGESnet could perform all of these 30,000 computations while obtaining 
similar strain yields to those discovered in the paper, on a similarly configured device in a computationally 
feasible amount of time (maybe, for example, indicated by a 50-60% reduction in computational time while 
still achieving similar RMSE values). 

After some of these simulations have been performed a random sample of simulations generated by our 
model will be chosen and classical MD simulations will be performed on the same initial graphene cutout 
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structures as were fed to the SAGESnet model. The trajectories and strain yield of these models will be 
compared to gain an understanding of the divergence between the SAGESnet simulations and traditional 
MD simulations. In the cited paper, the researchers were able to get a root mean squared error (RMSE) of 
less than 0.6 for the strain parameters predicted by their NN compared to those predicted by MD. We would 
consider it to be a good indicator for the validity of our network to obtain a RMSE either equal to or lower 
than this value on randomly sampled configurations.  

The Use of Neural Networks for Gaining Understanding About Reality: A recent interactive paper (25) 
studied the use of a neural network type cellular automata grid that was capable of generating self-healing 
images that grew from a single starting cell. What is remarkable about this paper is the attempt that was 
made by the authors to understand a process common to biology – that is, how it is that such large creatures 
are able to originate from a such a small single embryo. The authors in this paper did not tell the initial cell 
exactly how it was supposed to accomplish this task – they merely placed it in its environment and applied 
a loss function that rewarded the cell for growing into a shape that more closely approximated its target 
shape given by the authors. Studies like this that investigate the principles of emergence can help us to gain 
a greater understanding of biology, and what processes might be driving forces behind it. And, as we 
discussed, earlier, the autoencoders used in SAGESnet could be used for the purpose of classifying different 
patterns that arise in chemical systems, patterns of which we have not yet become aware – and this type of 
discovery could lead to breakthroughs in our understanding of these complex systems, and could help to 
lead us to new discoveries in chemical nanoscience. An understanding of these types of patterns could lead 
us to a greater understanding of why nanostructures can be so hard to predict, and could help us to create 
frameworks for better understanding what patterns or structures are most likely to emerge in certain 
nanoscale systems. And, using this framework, we could even gain greater understanding as to what types 
of nanoscale systems we could create that might demonstrate target emergent patterns based on our 
specifications, ushering in a new level of control for matter at the nanoscale. 

Concluding Statement: 

We have seen that the SAGESnet architecture offers many possibilities, some of them representing longer 
term goals, and some of them more directly applicable. From the simulation of chemical data and nanoscale 
systems over multiple temporal and spatial domains, to the classification of chemical systems in an effort 
to better understand the underpinning mechanisms behind them – it is fascinating to consider what types of 
new findings we could make given these new tools provided by artificial intelligence, and of how, when 
dealing with neural networks, a study of the tools themselves can lead to greater scientific insights. This 
proposal will present a lot of work in terms of further refinement and training of the SAGESnet architecture 
to be performant in real world nanomaterial prediction, but it also opens up the possibility of potentially 
being able to simulate matter in a computationally efficient manner on a large scale than previously 
possible, while still capturing material properties dependent on smaller scale phenomena – and these 
possibilities make this process of discovery well worth it. 
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